Stereoselective Synthesis of meso-2,6-Diaminopimelic Acid and Its **Selectively Protected Derivatives**

Yong Gao, Patricia Lane-Bell, and John C. Vederas*

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Received November 20, 1997

Four synthetic routes to selectively protected derivatives and isomers of meso-diaminopimelic acid (DAP) (1a), a key constituent of bacterial peptidoglycan, were investigated. N-(tert-butyloxycarbonyl)-D-allylglycine (2) and N-(benzyloxycarbonyl)-L-allylglycine (4) were esterified to ethylene glycol and cyclized via olefin metathesis to a protected derivative 7 of 2,7-diaminosuberic acid. Analogous linking of propane-1,3-diol with **2** and potential precursors of N-(benzyloxycarbonyl)-L-vinylglycine moieties, such as N-(benzyloxycarbonyl)-L-glutamate or N-(benzyloxycarbonyl)-Lmethionine sulfoxide, gave 12 or 15, both of which produced the α , β -unsaturated ester 14 upon attempted generation of the vinylglycine precursor for olefin metathesis to DAP derivatives. An alternative route, based on SnCl₄-catalyzed ene reaction of methyl N-(benzyloxycarbonyl)-Lallylglycinate (18) with glyoxylate esters of phenylcyclohexanol isomers as chiral auxiliaries, gave ca. 85:15 ratios of diastereomeric alcohols (19 or 20). These could be transformed to DAP derivatives in a series of steps employing azide displacement of corresponding mesylates to introduce the second nitrogen. A third method, involving reduction of pure dimethyl (6S)-2-keto-6-[N-(benzyloxycarbonyl)amino]pimelate (32) to the corresponding alcohol 33 with (S)-binaphthol-ruthenium catalyst as the key step, gives a 79:21 isomeric ratio. The fourth route employs the bis(oxazoline)-copper complex 41 as a chiral catalyst for the ene reaction of methyl (S)-4-(phenylthio)allylglycinate (39) and methyl glyoxylate to afford 42 in 94:6 isomeric ratio. Nickel boride removal of sulfur and the double bond in the presence of the Cbz group gives the desired alcohol, dimethyl (2S,6S)-6-[N-(benzyloxycarbonyl)amino]-2-hydroxyheptane-1,7-dioate (33). The required selectively protected second nitrogen is introduced using Mitsunobu inversion with N-tert-butyl [[2-(trimethylsilyl)ethyl]sulfonyl]carbamate (34) as a key step.

The biosynthesis of the peptidoglycan cell wall layer in bacterial cells provides numerous potential targets for development of new antibiotics.^{1,2} Among these is mesodiaminopimelic acid (DAP) (1a), the key cross-linking

amino acid in this essential structural polymer in Gramnegative bacteria and a precursor to L-lysine, which is used for this purpose by many Gram-positive organisms.³ Since mammals lack the DAP biosynthetic pathway, require L-lysine in their diet, and usually excrete DAP unchanged (except ruminants), there has been substantial interest in the specific inhibition of enzymes involved in its biosynthesis.^{3,4} DAP also occurs in physiologically active peptidoglycan fragments that act as bacterial toxins, sleep-inducing factors, or antitumor agents.⁵ Hence, considerable previous effort has focused on the synthesis of DAP isomers and their analogues,⁶ as well as on the mechanism and genetic organization of DAPrelated enzymes.^{3,7} However, improved methods are still needed to provide facile access to stereochemically pure

^{*} To whom correspondence should be addressed. Tel.: (403) 492-5475. Fax: (403) 492-8231. E-mail: John.Vederas@Ualberta.ca.

⁽¹⁾ For reviews of peptidoglycan formation see: (a) Ghuysen, J.-M. *Int. J. Antimicrob. Agents* 1997, *8*, 45–60. (b) Amábile-Cuevas, C. F.;
Cárdenas-Garcia, M.; Ludgar, M. Am. Sci. 1995, *83*, 320–329.
(2) (a) Ward, J. B. In Antibiotic Inhibitors of Bacterial Cell Wall

Biosynthesis; Tipper, D. J., Ed.; Pergamon Press: New York, 1987; pp 1–43. (b) Bugg, T. D. H.; Walsh, C. T. *Nat. Prod. Rep.* **1992**, *9*, 199– 215

⁽³⁾ For a reviews of DAP metabolism see: (a) Cox, R. J. Nat. Prod. *Rep.* **1996**, *13*, 29–43. (b) Scapin, G. S.; Blanchard, J. S. *Adv. Enzymol.* **1997**, *72A*, in press.

⁽⁴⁾ For leading references see: (a) Cox, R. J.; Sherwin, W. A.; Lam, K. P.; Vederas, J. C. J. Am. Chem. Soc. 1996, 118, 7449-7460. (b) Williams, R. M.; Fegley, G. J.; Gallegos, R.; Schaefer, F.; Pruess, D. L. Tetrahedron 1996, 52, 1149-1164. (c) Auger, G.; van Heijenoort, J.; Vederas, J. C.; Blanot, D. FEBS Lett. 1996, 391, 171-174. (d) Couper, L.; McKendrick, J. E.; Robins, D. J.; Chrystal, E. J. T. *Biorg. Med. Chem. Lett.* **1994**, *4*, 2267–2272. (e) Abbott, S. D.; Lane-Bell, P.; Sidhu, Chem. Lett. 1994, 4, 2267-2272. (e) Abbott, S. D.; Lane-Bell, P.; Sidhu,
K. P. S.; Vederas, J. C. J. Am. Chem. Soc. 1994, 116, 6513-6520. (f)
Song, Y. H.; Niederer, D.; Lane-Bell, P.; Lam, L. K. P.; Crawley, S.;
Palcic, M. M.; Pickard, M. A.; Pruess, D. L.; Vederas, J. C. J. Org.
Chem. 1994, 59, 5784-5793. (g) Roberts, J. L.; Borgese, J.; Chan, C.;
Keith, D. D.; Wei, C.-C. Heterocycles 1993, 35, 115-120.
(5) For leading references see: (a) Johannsen, L.; Wecke, J.; Obal,
F.; Krueger, J. M. Am. J. Physiol. 1991, 260, R126-R133. (b)
Johannsen, L. APMIS 1993, 101, 337-344. (c) Luker, K. E.; Tyler, A.

N.; Marshall, G. R.; Goldman, W. E. Molec. Microbiol. 1995, 16, 733-743. (d) Takada, H.; Kawabata, Y.; Kawata, S.; Kusumoto, S. Infect. Immun. 1996, 64, 657-659.

⁽⁶⁾ For some examples see: (a) Gelb, M. H.; Lin, Y.; Pickard, M. A.; Song, Y.; Vederas, J. C. J. Am. Chem. Soc. 1990, 112, 4932-4942. (b) Jurgens, J. Tetrahedron Lett. 1992, 33, 4727–4730. (c) Kolodziejczyk,
 A. M.; Kolodziejczyk, A. S.; Stoev, S. Int. J. Peptide Protein Res. 1992, A. M.; Kolodziejczyk, A. S.; Stoev, S. Int. J. Peptide Protein Res. 1992, 39, 382–387. (d) Williams, R. M.; Yuan, C. J. Org. Chem. 1992, 57, 6519–6527. (e) Bold, G.; Allmendinger, T.; Herold, P.; Moesch, L.; Schär, H.-P.; Duthaler, R. O. Helv. Chim. Acta 1992, 75, 865–882. (f) Baldwin, J. E.; Lee, V.; Schofield, C. J. Synth. Lett. 1992, 249–251. (g) Williams, R. M.; Yuan, C. J. Org. Chem. 1994, 59, 6190–6193. (h) Holcomb, R. C.; Schow, S.; Ayral-Kaloustian, S.; Powell, D. Tetrahedron Lett. 1994, 35, 7005–7008. (i) Arakawa, Y.; Goto, T.; Kawase, K.; Yoshifuji, S. Chem. Pharm. Bull. 1995, 43, 535–536. (j) Nadin, A.; Derrer, S.; McGeary, R. P.; Goodman, J. M.; Raithby, P. R.; Holmes, A. B.; O'Hanlon, P. J.; Pearson, N. D. J. Am. Chem. Soc. 1995, 117, 9768–9769. (k) Williams, R. M.; Fegley, G. J.; Gallegos, R.; Schaefer, F.; Pruess, D. L. Tetrahedron 1996, 52, 1149–1164. (l) Jackson, R. F. W.; Turner, D.; Block, M. H. J. Chem. Soc., Perkin Trans. 11897, 865– W.; Turner, D.; Block, M. H. J. Chem. Soc., Perkin Trans. 1 1997, 865-870

DAP derivatives with different protecting groups on the two amino and/or carboxyl functions. Ideally, complete orthogonal protection would permit individual manipulation of each of these four functionalities for synthesis of enzyme inhibitors or peptidoglycan-derived peptides. In the present work, we examine several approaches to selectively protected meso-DAP using optically pure L-allylglycine as a starting material. One route, potentially applicable to a variety of unusual molecules with amino acid moieties at either end, employs a ring-closing olefin metathesis reaction.⁸ Several alternative methods reported herein are based on the ene reaction. In earlier studies, we^{4a} and others^{9,10} had employed nonstereoselective ene reactions to assemble the DAP skeleton. In addition to other approaches, we now describe the use of chiral auxiliaries and catalysts in such ene condensations.

Results and Discussion

Olefin Metathesis Approach to DAP and 2,7-Diaminosuberic Acid.¹¹ The successful application of olefin metathesis reactions to the synthesis of cyclic peptide derivatives by Grubbs and co-workers⁸ suggested this methodology as a possible avenue to selectively protected DAP. Since 12-membered rings can often be formed quite readily, it appeared that linking two differentially N-protected amino acids bearing terminal olefins as esters of the appropriate chosen diol would permit metathesis cyclization with desired concomitant carbon-carbon bond formation. To test this, N-(tertbutyloxycarbonyl)-D-allylglycine (2) and N-(benzyloxycarbonyl)-L-allylglycine (4) were sequentially esterified onto ethylene glycol to form diester 5 (Scheme 1). Reaction with the Grubbs catalyst 6 produces the cyclic olefin 7, a protected derivative of 2,7-diaminosuberic acid in modest (35%, not optimized) yield. Presumably, ester

hydrolysis and hydrogenation under standard conditions^{4a} would generate (2*S*,7*R*)-2-[*N*-(*tert*-butyloxycarbonyl)amino]-7-aminooctanedioic acid, although this was not done for this model system. LL-Diaminosuberic acid [(2*S*,7*S*)-2,7diaminooctanedioic acid] has been extensively employed as a nonreducible isosteric replacement for cystine in biologically active peptides.^{11,12}

This encouraging result suggested that similar cyclization of the propanediol diester of N-(benzyloxycarbonyl)-L-vinylglycine and *N*-(*tert*-butyloxycarbonyl)-D-allylglycine could produce a differentially protected DAP derivative. Although N-protected vinylglycine esters are quite sensitive to isomerization of the double bond from the β,γ - to the α,β -position, they can be made by lead tetraacetate decarboxylation of glutamate derivatives¹³ or by elimination of methionine sulfoxides.¹⁴ Both routes were investigated with a strategy of generating the vinylglycine moiety just before attempted metathesis cyclization (Scheme 2). Conversion of the known glutamate derivative **8**¹⁵ to its (trimethylsilyl)ethyl ester **9** followed by reaction with 1,3-propanediol affords 10, which is readily linked to N-(tert-butyloxycarbonyl)-Dallylglycine (2) to give 11. Deprotection quantitatively generates the acid 12. Unfortunately, attempts to generate the vinylglycine moiety via lead tetraacetate decarboxylation¹³ of **12** produce only the conjugated compound 14 and none of the desired vinylglycine derivative 13. An analogous approach provides the propanediol diester 15 of methionine sulfoxide and 2 (54% overall yield for three steps from *N*-(benzyloxycarbonyl)-L-methionine). However, attempted elimination under conditions known to normally give vinylglycine esters¹⁴ again generates the undesired conjugated 14 rather than 13. The reason for the unexpectedly rapid isomerization of presumed intermediate 13 is unknown but may involve deprotonation

⁽⁷⁾ For leading references see: (a) Scapin, G.; Reddy, S. G.; Blanchard, J. S. *Biochemistry* **1996**, *35*, 13540–13551. (b) Blickling, S.; Renner, C.; Laber, B.; Pohlenz, H. D.; Holak, T. A.; Huber, R. *Biochemistry* **1997**, *36*, 24–33. (c) Beaman, T. W.; Binder, D. A.; Blanchard, J. S.; Roderick, S. L. *Biochemistry* **1997**, *36*, 489–494. (d) Karsten, W. F. *Biochemistry* **1997**, *36*, 1730–1739. (e) Pavelka, M. S.; Weisbrod, T. R.; Jacobs, W. R. J. Bacteriol. **1997**, *179*, 2777–2782. (f) Karita, M.; Etterbeek, M. L.; Forsyth, M. H.; Tummuru, M. K. R.; Blaser, M. J. *Infect. Immun.* **1997**, *65*, 4158–4164. (g) Hoang, T. T.; Williams, S.; Schweizer, H. P. *Microbiology* **1997**, *143*, 899–907. (h) Wang, F.; Blanchard, J. S.; Tang, X. *Biochemistry* **1997**, *36*, 3755– 3759.

⁽⁸⁾ Miller, S. J.; Blackwell, H. E.; Grubbs, R. H. J. Am. Chem. Soc. 1996, 118, 9606–9614.

^{(9) (}a) Agouridas, K.; Girodeau, J. M.; Pineau, R. *Tetrahedron Lett.* **1985**, *26*, 3115–3118. (b) Girodeau, J.-M.; Agouridas, C.; Masson, M.; Pineau, R.; Le Goffic, F. *J. Med. Chem.* **1986**, *29*, 1023–1030.

⁽¹⁰⁾ For closely related syntheses of chiral 2-amino-6-hydroxypimelic acid derivatives see: (a) Schneider, H.; Sigmund, G.; Schricker, B.; Thirring, K.; Berner, H. *J. Org. Chem. Soc.* **1993**, *58*, 683–689. (b) Mehlführer, M.; Thirring, K.; Berner, H. *J. Org. Chem.* **1997**, *62*, 4078–4081.

⁽¹¹⁾ After completion of this work, we became aware that Professor Robert M. Williams (Colorado State University) has independently developed an olefin metathesis procedure for generation of selectively protected chiral 2,7-diaminosuberic acids in high yield: Williams, R. M.; Liu, J. J. Org. Chem. **1998**, *63*, 2130.

^{(12) (}a) Veber, D. F.; Strachan, R. G.; Bergstrand, S. J.; Holly, F. W.; Homnick, C. F.; Hirschmann, R.; Torchiana, M. L.; Saperstein, R. J. Am. Chem. Soc. 1976, 98, 2367–2369. (b) Veber, D. F.; Holly, F. W.; Nutt, R. F.; Bergstrand, S. J.; Brady, R. F.; Hirschmann, R.; Glitzer, M. S.; Saperstein, R. Nature (London) 1979, 280, 512–514. (c) Ueki, M.; Oyamada, H.; Oka, T. Pept. Chem. 1986, 55–58. (d) Videnov, G.; Buettner, K.; Casaretto, M.; Fohles, J.; Gattner, H. G.; Stoev, S.; Brandenburg, D. Biol. Chem. Hoppe-Seyler 1990, 371, 1057–1066. (e) Cuthbertson, A. S.; Husbyn, M.; Engebretsen, M.; Hartmann, M.; Lange, M.; Sandosham, J.; Fischer, P. M.; Fjerdingstad, H.; Lovhaug, D. J. Med. Chem. 1997, 40, 2876–2882.

^{(13) (}a) Hanessian, S.; Sahoo, S. P. *Tetrahedron Lett.* **1984**, *25*, 1425–1428. (b) Krol, W. J.; Mao, S.; Steele, D. L.; Towensend, C. A. J. Org. Chem. **1991**, *56*, 728–731. (c) Zabriskie, T. M.; Cheng, H.; Vederas, J. C. J. Am. Chem. Soc. **1992**, *114*, 2270–2272.

⁽¹⁴⁾ Afzali-Ardakani, A.; Rapoport, H. J. Org. Chem. 1980, 45, 4817-4820.

⁽¹⁵⁾ Itoh, M. Chem. Pharm. Bull. 1969, 17, 1679-1686.

at the α -carbon by a remote functional group in the allylglycine moiety. Nevertheless, the formation of 7 indicates that this approach could be a viable route to a number of compounds bearing orthogonally protected amino acid moieties at opposite ends of a central chain.¹¹

Synthesis of DAP Derivatives Using Chiral Auxiliaries for Ene Reaction. The ene reaction of protected allylglycines with esters of glyoxylic acid provides rapid access to a variety of unusual amino acids and has been successful for production of DAP derivatives as isomeric mixtures^{9a,b} as well as for generation of stereochemically pure derivatives of substituted α -aminopimelic acids.^{4a,10b} An earlier investigation of ene condensation of achiral glyoxylate esters with optically pure dipeptides having an L-allylglycine moiety reported relatively low diastereomeric excess (25%) at the newly generated hydroxyl-bearing carbon.^{10a} Since elegant work by Whitesell and co-workers had previously shown that pure isomers of 2-phenylcyclohexyl glyoxylate undergo ene reaction with high diastereoselection,¹⁶ we investigated the use of such auxiliaries to form selectively protected DAP isomers. Thus, optimized condensation of the known esters **16** and **17**^{16b} (as their aldehyde hydrates) with N-(benzyloxycarbonyl)-L-allylglycine methyl ester $(18)^{4a,e}$ using tin tetrachloride at -23 °C affords the corresponding functionalized alcohols 19 and 20, respectively (Scheme 3). Initial NMR (¹H and ¹³C) examination suggested isomeric ratios of 84:16 and 86:14, respectively, at the newly generated asymmetric center. However, because of extensive spectral overlap and the possibility that epimerization at the α -amino center could occur during the ene reaction, each isomer mixture was further transformed to DAP for additional stereochemical analysis to confirm this.

Hydrogenation in the presence of tert-butoxypyrocarbonate (Boc anhydride) affords saturated alcohols 21 and 22, which upon mesylation, azide displacement, and a second hydrogenation generate the selectively protected DAP derivatives 27 and 28, respectively. Basic hydrolysis removes both ester functionalities to give 29 and 30. Deprotection of 29 with trifluoroacetic acid provides a 84: 16 mixture of LL-DAP (1b) and meso-DAP (1a), whereas the same procedure with **30** gives a 86:14 mixture of **1a** and 1b. The stereochemistry was confirmed by conversion of these DAP isomer mixtures to the corresponding bis-N-(S)-camphanamide dimethyl esters 31a and 31b (Scheme 4). ¹H NMR comparison (particularly the methyl ester region) with stereochemically pure samples 31a-c made from pure LL-, meso- and DD-DAP isomers, obtained by literature separation-enzymatic resolution procedures,¹⁷ verifies the initial stereochemical outcome of the ene reactions and indicates that no significant epimerization occurs in subsequent transformations. The absence of DD-DAP derivative **31c** from the camphanamides obtained via the ene condensation route confirms that no epimerization occurs at the amino center derived from L-allylglycine.

Although other auxiliaries could in principle provide better diastereoselection in the ene reaction, this approach was not investigated further. Primary reasons include the extra steps necessary for attachment and disconnection of the chiral auxiliary, the lack of selectivity during removal of groups from the carboxyl moieties of DAP, and the development of more expedient approaches involving chiral catalysis (see below).

Synthesis of DAP Derivatives Using Chiral Catalysts for Reduction or for Ene Reaction. We had previously prepared optically pure dimethyl (6*S*)-2-keto-6-[*N*-(benzyloxycarbonyl)amino]pimelate (**32**) by a short

^{(16) (}a) Whitesell, J. K. Acc. Chem. Res. 1985, 18, 280–284. (b) Whitesell, J. K.; Lawrence, R. M.; Chen, H. H. J. Org. Chem. 1986, 51, 4779–4784. (c) Whitesell, J. K.; Bhattacharya, A.; Buchanan, C. M.; Chen, H. H.; Deyo, D.; James, D.; Liu, C. L.; Minton, M. A. Tetrahedron 1986, 42, 2993–3001. (d) Whitesell, J. K.; Lawrence, R. M. Chimia 1986, 40, 318–321.

⁽¹⁷⁾ Pure DAP isomers were obtained by literature separation and enzymatic resolution procedures; see ref 4e and: (a) Work, E.; Birnbaum, S. M.; Winitz, M.; Greenstein, J. P. *J. Am. Chem. Soc.* **1955**, 77, 1916–1918. (b) Wade, R.; Birnbaum, S. M.; Winitz, M.; Koegel, R. J.; Greenstein, J. P. *J. Am. Chem. Soc.* **1957**, 79, 648–652. (c) Van Heijenoort, J.; Bricas, E. Bull. Chim. Soc. Fr. **1968**, 2828–2831.

with nitrogen to make DAP analogues (Scheme 5). However, after considerable effort to obtain high selectivity, the best reduction conditions afford only a 79:21 ratio of 6*S*:6*R* isomers of **33**. Since the α -hydroxy esters are prone to epimerization, the product mixture was directly transformed to *meso*-DAP (**1a**) using Mitsunobu substitution with *N*-tert-butyl [[2-(trimethylsilyl)ethyl]sulfonyl]carbamate (**34**)¹⁹ to give **35** followed by deprotection. Conversion to the bis-Mosher amides and HPLC analysis confirmed the isomeric ratio. Although fairly short, this route lacks the desired level of stereoselection in the hydrogenation of the oxo functionality. Attempts to discover a better catalyst for this process or to accomplish this reduction on the parent keto acid using various dehydrogenases have not been successful thus far.

Numerous recent reports of ene reactions facilitated by chiral catalysts^{20,21} suggest that such reagents could

⁽¹⁸⁾ Noyori, R.; Ikeda, T.; Ohkuma, T.; Widhalm, M.; Kitamura, M.; Takaya, H.; Akutagawa, S.; Sayo, N.; Saito, T.; Taketomi, T.; Kumobayashi, H. *J. Am. Chem. Soc.* **1989**, *111*, 9134–9135.

⁽¹⁹⁾ Campbell, J. A.; Hart, D. J. J. Org. Chem. **1993**, 58, 2900–2903.

⁽²⁰⁾ For reviews and some references to chiral Binap-titanium complexes for ene reactions see: (a) Mikami, K. Pure Appl. Chem. **1996**, 68, 639-644. (b) Mikami, K.; Shimizu, M. Chem. Rev. **1992**, 92, 1021-1050. (c) Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc. **1990**, 112, 3949-3954. (d) Mikami, K.; Yoshida, A. Tetrahedron Lett. **1994**, 35, 7793-7796. (e) Terada, M.; Motoyama, Y.; Mikami, K. Tetrahedron Lett. **1994**, 35, 6693-6694.

⁽²¹⁾ For some references to chiral bis(oxazoline)copper complexes see: (a) Evans, D.; Woerpel, K. A.; Scott, M. S. Angew. Chem., Int. Ed. Engl. **1992**, *31*, 430–432. (b) Corey, E. J.; Ishihara, K. Tetrahedron Lett. **1992**, *33*, 6807–6810. (c) Evans, D.; Miller, S. J.; Lectka, T. J. Am. Chem. Soc. **1993**, *115*, 6460–6461. (d) Johannsen M.; Jörgensen, K. A. J. Org. Chem. **1995**, *60*, 5757–5762.

accomplish stereoselective condensation of N-(benzyloxycarbonyl)-L-allylglycine methyl ester (18) with simple glyoxylate esters. However, a large variety of chiral catalysts fail because their activation of the aldehyde carbonyl is insufficient to promote bond formation with the unreactive terminal olefin of 18. To circumvent this difficulty, a sulfur substituent was temporarily introduced at the terminus of the allylglycine residue (Scheme 6). Thus, alkylation of the anion of commercially available Schöllkopf bis-lactim ether (36)²² with the known 2-(phenylthio)-3-chloropropene (37)²³ affords 38, which hydrolyzes to L-valine methyl ester and (S)-4-(phenylthio)allylglycine methyl ester (39) (≥98% ee by NMR analysis of the corresponding camphanamides). This is then protected as the *N*-Cbz derivative **40** prior to ene condensation with methyl glyoxylate.

Attempted conversion of 40 using chiral binaphtholtitanium complexes²⁰ as Lewis acids fails and leads only to recovery of starting material. However, the bis-(oxazoline)-copper complex 41,²¹ which was initially used for asymmetric Diels-Alder reactions and was reported to produce undesired ene side products,^{21d} catalyzes the desired reaction between 40 and methyl glyoxylate to give alcohol 42 in modest (42%) yield. The diastereomeric excess on the newly generated center could not be easily determined at this stage because this product is somewhat unstable. The olefinic bond and the phenylthio group of 42 are simultaneously removed by NiCl₂sodium borohydride (nickel boride)²⁴ to generate saturated alcohol 33 in good yield. Other desulfurization reagents such as Raney-Ni, tributyltin hydride, and lithium in ammonia give primarily undesired overreduction. Mitsunobu substitution of the hydroxy group of **33** using **34**¹⁹ as before inverts the chiral center to give a protected DAP derivative 35 with the desired meso stereochemistry. Removal of the silyl-containing group proceeds quantitatively with tetrabutylammonium fluoride to form **43**. Saponification of the diester generates a selectively *N*-protected analogue **44** in high yield. The Boc and Cbz protecting groups can then be selectively removed as desired. Hydrogenation (1 atm) with 10% Pd/C catalyst followed by acidic cleavage of the Boc group affords meso-DAP (1a). ¹H NMR analysis of the corresponding Mosher's diamide derivative as above shows the stereochemistry to be 94% (2R,6S) (1a) and 6% (2S,6S)(1b). Since earlier studies show that there is usually no isomerization under the deprotection conditions, and the Mitsunobu process usually occurs with clean inversion,²⁵ this suggests that the key ene reaction proceeds with ca. 88% diastereomeric excess.

Summary. The stereoselective synthesis of selectively protected derivatives of *meso*-DAP (**1a**) has been investigated using four approaches: olefin metathesis skeleton assembly, ene reaction employing chiral 2-phenylcyclohexyl auxiliaries, stereospecific reduction of 2-keto-6-

aminopimelic derivatives (obtained via nonselective ene processes^{4a}) with Binap–ruthenium catalyst, and ene reaction using chiral copper oxazoline catalysts. Although the metathesis cyclization is useful for generation of diaminosuberic acid derivatives,11 problems with isomerization of vinylglycine moieties blocked this route to DAP. Both the chiral phenylcyclohexyl auxiliary ene route and the stereospecific reduction successfully lead to the desired DAP derivatives, but the best isomer ratio (94: 6) and the most facile method employ chiral copper catalyst for ene condensation of methyl glyoxylate with methyl N-(benzyloxycarbonyl)-L-allylglycinate (18). Mitsunobu insertion of the nitrogen functionality then affords the target protected DAP derivatives. This synthetic approach can be used not only to produce these compounds, but also other DAP analogues useful for enzyme mechanism and inhibition studies. Additional studies on DAP enzymes and their inhibitors as potential antibiotic drug candidates are in progress.

^{(22) (}a) Schöllkopf, U.; Groth, U.; Deng, C. Angew. Chem., Int. Ed. Engl. **1981**, 20, 798–799. (b) Schöllkopf, U.; Hartwig, W.; Groth, U. Angew. Chem., Int. Ed. Engl. **1979**, 18, 863.

⁽²³⁾ Mueller, W. H.; Butler, P. É. *J. Org. Chem.* **1968**, *33*, 1533–1537.

^{(24) (}a) Back, T. G.; Baron, D. L.; Yang, K. J. Org. Chem. **1993**, 58, 2407–2413. (b) Luh, T.-Y.; Hsieh, Y.-T. In *Encyclopedia of Reagents for Organic Synthesis*; Paquette, L. A., Ed.; Wiley: Chichester, U.K., 1995; Vol. 6, pp 3706–3707.

 ^{(25) (}a) Mitsunobu, O. Synthesis 1981, 1–28. (b) Hughes, D. L. Org. React. 1992, 42, 335–656. (c) Hughes, D. L.; Reamer, R. A. J. Org. Chem. 1996, 61, 2967–2971.

Experimental Section

General Methods. Common experimental procedures and instrumentation have been described previously.^{4a,e} The procedure of Whitesell and co-workers^{16b} was used to prepare (1*R*,2*S*)-*trans*-2-phenylcyclohexyl oxoacetate (**16**). The optical purity of this starting material was determined to \geq 98% ee by conversion to its (*R*)-(+)- α -methoxy- α -(trifluoromethyl)-phenylacetic acid ester (Mosher ester) using the corresponding acid chloride, followed by comparison to the diastereomeric product derived from the (1*S*,2*R*) -*trans*-2-phenylcyclohexyl oxoacetate (**17**) by ¹H NMR spectrometry. The bis-lactim ether **36**²² was purchased from Merck Schuchardt (Hohenbrunn, Germany).

N-(*tert*-Butoxycarbonyl)-D-allyglycine (2). To a solution of D-allylglycine²⁶ (0.61 g, 5.3 mmol) in saturated aqueous NaHCO₃ (60 mL) and 1,4-dioxane (10 mL) was added Boc₂O (1.4 g, 6.4 mmol). After being stirred for 5 h, the solution was washed with EtOAc (20 mL), acidified to pH 1 with 2 M HCl, and extracted with EtOAc (3 × 30 mL). The organic extracts were dried and evaporated to give **2** as an oil (0.68 g, 61%): R_f 0.67 (70% EtOAc in hexane); $[\alpha]_D$ –13.33° (*c* 1.08 CHCl₃); IR (CHCl₃ cast) 3340–3000, 1736, 1712, 1620, 1592 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.42 (s, 9 H), 2.42–2.62 (m, 2 H), 4.32–4.44 (m, 1 H), 5.02–5.21 (m, 2 H), 5.65–5.80 (m, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 28.27, 36.40, 52.76, 80.30, 119.36, 132.14, 155.53, 176.61; CI MS *m*/*z* (NH₃) 233 (80, [M + 18]⁺). Anal. Calcd for C₁₀H₁₇NO₄: C, 55.80; H, 7.96; N, 6.51. Found: C, 56.36; H, 8.17; N, 6.42.

N-(*tert*-Butoxycarbonyl)-D-allylglycine, 2-Hydroxyethyl Ester (3). Condensation of 2 and ethylene glycol analogous to preparation of 9 below gave 3 in 82% yield: R_f 0.28 (40% EtOAc in hexane); IR (CHCl₃ cast) 3428, 3215, 1770, 1729, 1620, 1587 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.40 (s, 9 H), 2.41–2.59 (m, 2 H), 3.79 (t, 2 H, J = 4.5 Hz), 4.20–4.32 (m, 3 H), 5.08–5.21 (m, 4 H), 5.63–5.74 (m, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 28.26, 36.40, 53.13, 60.60, 66.73, 80.26, 119.21, 132.37, 155.64, 172.26; CI MS m/z (NH₃) 277 (62, [M + 18]⁺). Anal. Calcd for Cl₁₂H₂₁NO₅: C, 55.58; H, 8.16; N, 5.40. Found: C, 55.81; H, 8.36; N, 5.14.

2-[(2*R***)-2-[[(***tert***-Butoxycarbonyl)amino]-4-pentenoyl]oxy]ethyl** *N***-(Benzyloxycarbonyl)-L-allylglycinate (5). Condensation of 3** and methyl *N*-(benzyloxycarbonyl)-L-allylglycinate (**4**) analogous to preparation of **9** below gave **5** in 83% yield: R_f 0.60 (30% EtOAc in hexane); $[\alpha]_D - 3^\circ$ (*c* 0.5 CHCl₃); IR (CHCl₃ cast) 3347, 1747, 1716, 1642, 1518 cm⁻¹; ¹H NMR (CDCl₃, 360 MHz) δ 1.41 (s, 9 H), 2.39–2.62 (m, 4 H), 4.21–4.38 (m, 5 H), 4.40–4.44 (m, 1 H), 4.97–5.08 (m, 1 H), 5.08–5.14 (m, 4 H), 5.35 (d, 1 H, *J* = 7.5 Hz), 5.59–5.72 (m, 2 H), 7.27–7.38 (m, 5 H); ¹³C NMR (CDCl₃, 100 MHz) δ 28.29, 36.54, 52.86, 53.27, 61.87, 62.58, 62.83, 67.04, 80.00, 119.27, 119.53, 128.11, 128.21, 128.53, 131.91, 132.18, 136.23, 155.10, 155.76, 171.48, 171.84; CI MS *m*/*z* (NH₃) 492 (27, [M + 1]⁺). Anal. Calcd for C₂₅H₃₄N₂O₈: C, 61.21; H, 6.99; N, 5.71. Found: C, 61.39; H, 7.06; N, 5.47.

(6R,11S)-11-[N-(Benzyloxycarbonyl)amino]-6-[N-(tertbutoxycarbonyl)amino]-5,12-dioxo-1,4-dioxacyclododec-8-ene (7). All reagents and solvents were dried and degassed. A round-bottomed flask charged with catalyst bis(tricyclohexylphosphine)benzylidineruthenium dichloride (6) (17 mg, 0.021 mmol) (Strem Chemicals, Newburyport, MA) was evacuated and filled with Ar three times before the addition of 5 (50.8 mg, 0.104 mmol) in degassed CH₂Cl₂ (15 mL) by an airtight syringe. The resulting orange solution was stirred under Ar for 1.5 h and then stirred for 2 h exposed to the air. The solution color changed from orange to dark black. Removal of the solvent in vacuo gave an oily residue that was purified by flash chromatography (25% EtOAc in hexane) to afford 7 as an equal mixture of double bond isomers (17 mg, 35%): R_f 0.09 (20% EtOAc in hexane); ¹H NMR (CDCl₃, 300 MHz) δ 1.45 (s, 9 H), 2.27–2.48 (m, 2 H), 2.48–2.68 (m, 2 H), 4.22–4.59 (m, 6 H), 5.12 (s, 2 H), 5.42–5.50 (m, 2 H), 7.30–7.42 (m, 5 H); MS CI m/z (NH₃) 480 (33, [M + 18]⁺), 463 (41, [M + 1]⁺).

2-(Trimethylsilyl)ethyl (4S)-3-[3-N-(Benzyloxycarbonyl)-5-oxazolidinon-4-yl]propanoate (9). To a stirred solution of compound 815 (233 mg, 0.789 mmol), 2-(trimethylsilyl)ethanol (113 µL, 0.789 mmol), and N,N-bis(2-oxo-3-oxazolidinyl)phosphinic chloride (201 mg, 0.789 mmol) in CH₂Cl₂ (30 mL) was added Et₃N (220 μ L, 1.58 mmol). After 10 h, the solvent was evaporated in vacuo to give a residue that was purified by flash chromatography (30% EtOAc in hexane) to afford 9 as an oil (158 mg, 51%): Rf 0.92 (60% EtOAc in hexane); IR (CHCl₃ cast) 1802, 1724, 1453 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ -0.03 (s, 9 H), 0.91 (t, 2 H, J = 8.6 Hz), 2.01-2.38 (m, 4 H), 4.07 (t, 2 H, J = 8.6 Hz), 4.29 (t, 1 H, J = 1005.8 Hz), 5.16 (s, 2 H), 5.21 (m, 1 H), 5.40 (m, 1 H), 7.19-7.28 (m, 5 H); 13 C NMR (CD₂Cl₂, 75.5 MHz) δ -1.92, 16.88, 25.55, 29.08, 53.63, 62.39, 67.44, 77.42, 127.82, 128.08, 128.23, 135.15, 152.60, 171.37, 171.70; CI MS m/z (NH₃) 411 (35, [M + 18]⁺). Anal. Calcd for C₁₉H₂₇NO₆Si: C, 57.99; H, 6.92; N, 3.56. Found: C, 58.10; H, 7.21; N, 3.26.

N-(Benzyloxycarbonyl)-L-glutamic Acid, α-(3-Hydroxypropyl) γ-(2-Trimethylsilyl)ethyl Ester (10). Propane-1,3diol (34 µL, 0.47 mmol) in THF (10 mL) was treated with 2.5 M *n*-BuLi in hexane (188 μ L, 0.47 mmol). After being stirred at room temperature for 10 min, this solution was transferred to a solution of 9 (154 mg, 0.392 mmol) in THF (20 mL) via cannula. The resulting mixture was stirred for 12 h, and the solvent was removed in vacuo. The residue was redissolved in EtOAc (40 mL), washed with water (10 mL), dried, and evaporated in vacuo to give an oil. Purification by flash chromatography (60% EtOAc in hexane) afforded 10 as a yellow oil (80 mg, 47%): $R_f 0.43$ (60% EtOAc in hexane); $[\alpha]_D$ = +6.7° (c 7.2 CHCl₃); IR (Nujol) 3079–2853, 1642, 1611, 1586, 1559, 1512 cm⁻¹; ¹H NMR (CDCl₃, 360 MHz) δ 0.01 (s, 9 H), 0.97 (t, 2 H, J = 8.4 Hz), 1.85 (t, 2 H, J = 5.9 Hz), 2.05 (m, 1 H), 2.17 (m, 1 H), 2.38 (m, 2 H), 3.67 (t, 2 H, J = 5.9 Hz), 4.16 (t, 2 H, J = 8.4 Hz), 4.27 (t, 2 H, J = 5.9 Hz), 4.37 (m, 1 H), 5.15 (s, 2 H), 5.42 (d, 1 H, J = 7.7 Hz); ¹³C NMR (CDCl₃, 75.5 MHz) δ -1.58, 17.24, 27.35, 30.21, 31.34, 53.47, 58.76, 62.51, 63.02, 67.03, 128.04, 128.15, 128.49, 136.12, 155.96, 172.14, 172.89; FAB MS m/z (Cleland) 440 (2.6, [M + 1]⁺). Anal. Calcd for C₂₁H₃₃NO₇Si: C, 57.38; H, 7.57; N, 3.19. Found: C, 57.29; H, 7.62; N, 3.15.

N-(Benzyloxycarbonyl)-L-glutamic Acid, α-3-[[(2R)-2-[N-tert-Butoxycarbonyl)amino]-4-pentenoyl]oxy]propyl γ-2-(Trimethylsilyl)ethyl Ester (11). A flask was charged with dicyclohexylcarbodiimide (DCC) (60 mg, 0.32 mmol), 4-(dimethylamino)pyridine (DMAP) (59 mg, 0.48 mmol), and DMAP·HCl (51 mg, 0.32 mmol) in CH₂Cl₂ (20 mL). The resulting solution was brought to reflux, and a solution of 10 (70 mg, 0.16 mmol) and (*R*)-*N*-(*tert*-butoxycarbonyl)allylglycine (2) (34 mg, 0.16 mmol) in CH₂Cl₂ (10 mL) was added. After 16 h, the solution was cooled to room temperature and washed with 1 M HCl (10 mL) and saturated aqueous NaHCO₃ solution. Hexane (10 mL) was added, and the resulting suspension was filtered, the filtrate being evaporated in vacuo to give an oily residue that was purified by flash chromatography (30% ÉtOAc in hexane) to afford 11 (90 mg, 88%): R_f 0.28 (20% EtOAc in hexane); $[\alpha]_D = +0.33$ (*c* 0.3 CHCl₃); IR (CHCl₃ cast) 3353, 1724, 1520 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.05 (s, 9 H), 0.95 (t, 2 H J = 8.5 Hz), 1.42 (s, 9 H), 1.98 (m, 3 H), 2.40 (m, 1 H), 2.31-2.60 (m, 4 H), 4.15 (t, 2 H, J = 8.5 Hz), 4.18–4.26 (m, 4 H), 5.07 (d, 1 H, J = 7.8 Hz), 5.10 (s, 2 H), 5.13–5.17 (m, 2 H), 5.48 (d, 1 H, J = 7.8 Hz), 5.48-5.73 (m, 1 H), 7.27-7.40 (m, 5 H); ¹³C NMR (CDCl₃, 75.5 MHz) δ -1.52, 17.30, 27.47, 27.88, 28.30, 30.36, 36.69, 52.91, 53.48, 61.61, 62.05, 63.01, 67.07, 79.96, 119.18, 128.11, 128.20, 128.54, 132.27, 136.20, 155.23, 155.98, 171.80, 172.00, 172.77; FAB MS m/z (Cleland) 637 (2, $[M + 1]^+$). Anal. Calcd for C31H48N2O10Si: C, 58.47; H, 7.60; N, 4.40. Found: C, 58.78; H, 7.54; N, 4.21.

N-(Benzyloxycarbonyl)-L-glutamic Acid, α -3-[[(2*R*)-2-[*N*-(*tert*-Butoxycarbonyl)amino]-4-pentenoyl]oxy]propyl Ester (12). To a solution of 11 (83 mg, 0.13 mmol) in

⁽²⁶⁾ D-Allylglycine was obtained by resolution of the racemate as previously reported in ref 4a.

THF (10 mL) was added a 1 M solution of TBAF in THF (400 μ L, 0.4 mmol). The resulting red solution was stirred for 45 min and then evaporated in vacuo. The residue was dissolved in Et₂O (45 mL), and the ethereal solution was washed with 1 M HCl (20 mL), dried, and evaporated in vacuo to give **12** as a gray oil (70 mg, quantitative): R_f 0.62 (EtOAc); IR (CHCl₃ cast) 3200–2800, 1773, 1760, 1596 cm⁻¹; ¹H NMR (CDCl₃, 360 MHz) 1.42 (s, 9 H), 1.96–2.15 (m, 3 H), 2.15–2.22 (m, 1 H), 2.40–2.48 (m, 4 H), 4.16–4.30 (m, 4 H), 4.30–4.45 (m, 2 H), 5.07–5.18 (m, 5 H); 5.66 (d, 1 H, J= 7.8 Hz), 5.61–5.78 (m, 1 H). 7.26–7.40 (m, 5 H); CI MS m/z (NH₃) 537 (42, [M + 1]⁺).

Lead Tetraacetate Oxidation of 12 To Generate 14. To a solution of **12** (70 mg, 0.13 mmol) in benzene (20 mL) was added cupric acetate monohydrate (8 mg, 0.0373 mmol), and the suspension was stirred under Ar for 1 h. Freshly prepared lead tetraacetate (132 mg, 0.299 mmol) was added, and the resulting suspension was stirred for 1 h at room temperature then 15 h at reflux. The suspension was then cooled and diluted with EtOAc (20 mL). The mixture was washed with water (3 × 20 mL) and brine (15 mL), dried, and evaporated in vacuo. The resulting syrup was purified by flash chromatography (30% EtOAc in hexane) to give **14** (28 mg, 43%): ¹H NMR (CDCl₃, 400 MHz) δ 1.45 (s, 9 H), 1.80 (d, 3 H, J = 7.2Hz), 1.94–2.11 (m, 2 H), 2.41–2.59 (m, 2 H), 4.12–4.27 (m, 5 H), 5.03 (d, 1 H, J = 7.8 Hz), 5.09–5.18 (m, 5 H), 5.65–5.76 (m, 1 H), 6.74 (q, 1 H, J = 7.2 Hz), 7.26–7.40 (m, 5 H).

N-(Benzyloxycarbonyl)-L-methionine Sulfoxide, 3-[[(2R)-2-[N-(tert-Butoxycarbonyl)amino]-4-pentenoyl]oxy]propyl Ester (15). To a solution of L-methionine (1.0 g, 6.7 mmol) in saturated aqueous NaHCO₃ (20 mL) solution was added benzyl chloroformate (1.11 mL, 7.4 mmol) dropwise over 2 min. After being stirred at room temperature for 2 h, the solution was washed with EtOAc (20 mL), acidified to pH 2 with 2 M HCl, and extracted with EtOAc (3 \times 20 mL). The combined organic extracts were dried and evaporated in vacuo to give N-(benzyloxycarbonyl)-L-methionine as an oil (1.2 g, 63%). A solution of this oil (721 mg) and propane-1,3-diol (968 mg, 12.74 mmol) in CH₂Cl₂ (10 mL) was transferred to a solution of DCC (524 mg, 2.55 mmol), DMAP (310 mg, 2.55 mmol), and DMAP·HCl (405 mg, 2.55 mmol) in CH₂Cl₂ (20 mL) at reflux. After 6 h at reflux, the solution was cooled and washed with 1 M HCl (2 \times 20 mL). The organic layer was dried and evaporated in vacuo to give a residue that was purified by flash chromatography (40% EtOAc in hexane) to afford N-(benzyloxycarbonyl)-L-methionine 3-hydroxypropyl ester (685 mg, 79%): R_f 0.14 (40% EtOAc in hexane); IR (CHCl₃ cast) 3400-2900, 1721, 1523 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.58–1.98 (m, 4 H), 2.09 (s, 3 H), 2.55 (t, 2 H, J= 7.6 Hz), 3.69 (t, 2 H, J = 5.9 Hz), 4.34 (m, 2 H), 4.45 (m, 1 H), 5.12 (s, 2 H), 5.41 (d, 1 H, J = 7.8 Hz), 7.26-7.38 (m, 5 H); CI MS m/z (NH₃) 359 (25, [M + 18]⁺). Anal. Calcd for C₁₆H₂₃-NO₅S: C, 56.29; H, 6.79; N, 4.10. Found: C, 56.64; H, 6.97; N, 3.98

The method used above to make **11** transformed *N*-(benzyl-oxycarbonyl)-L-methionine 3-hydroxypropyl ester and **2** to *N*-(benzyloxycarbonyl)-L-methionine, 3-[[(2*R*)-2-[*N*-(*tert*-buty-loxycarbonyl)amino]-4-pentenoyl]oxy]propyl ester in 84% yield: R_f 0.63 (40% EtOAc in hexane); ¹H NMR (CDCl₃, 400 MHz) δ 1.40 (s, 9 H), 1.86–2.41 (m, 7 H), 2.37–2.60 (m, 4 H), 4.04–4.26 (m, 4 H), 4.35 (m, 1 H), 4.48 (m, 1 H), 5.00–5.18 (m, 4 H), 5.42 (d, 1 H, *J* = 7.8 Hz), 5.54 (d, 1 H, *J* = 7.8 Hz), 5.60–5.71 (m, 1 H), 7.26–7.40 (m, 5 H); CI MS *m*/*z* (NH₃) 556 (34, [M + 18]⁺), 539 (20, [M + 1]⁺).

To a cooled solution (0 °C) of *N*-(benzyloxycarbonyl)-Lmethionine, 3-[[(2*R*)-2-[*N*-(*tert*-butyloxycarbonyl)amino]-4-pentenoyl]oxy]propyl ester (150 mg, 0.28 mmol) in methanol (10 mL) was added a solution of NaIO₄ (63 mg, 0.29 mmol) in water (10 mL) dropwise over a period of 2 h through an addition funnel. The mixture was then stirred at 4 °C for 12 h. The product was filtered through a bed of Celite, and the filtrate was extracted with chloroform (6 × 50 mL). The combined organic layers were washed with water (20 mL) and brine (20 mL), dried, and evaporated in vacuo. The residue was purified by flash chromatography (EtOAc) to give **15** (127 mg, 82%) as an oil: R_f 0.12 (EtOAc); IR (CHCl₃ cast) 3340, 1770, 1720, 1580 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.41 (s, 9 H), 1.97 (m, 2 H), 2.15 (m, 1 H), 1.93–2.50 (m, 3 H), 2.54 (s, 3 H), 2.77 (t, 2 H, J = 7.6 Hz), 4.10–4.26 (m, 4 H), 4.33 (m, 1 H), 4.46 (m, 1 H), 5.08 (s, 2 H), 5.11–5.19 (m, 2 H), 5.60–5.78 (m, 1 H), 5.83 (d, 1 H, J = 8.0 Hz), 5.89 (d, 1 H, J = 7.8 Hz), 7.37–7.41 (m, 5 H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 27.87, 28.33, 32.27, 36.63, 38.54, 50.07, 52.95, 53.21, 61.52, 62.32, 67.20, 80.01, 119.20, 128.19, 128.29, 128.57, 132.31, 136.14, 155.30, 156.13, 171.19, 172.06; CI MS m/z (NH₃) 572 (23, [M + 18]⁺), 555 (17, [M + 1]⁺). Anal. Calcd for C₂₆H₃₈N₂O₉S: C, 56.30; H, 6.91; N, 5.05. Found: C, 56.71; H, 6.77; N, 5.17.

1-Methyl 7-[(1R,2S)-trans-2-Phenylcyclohexyl] (2S,6R)-2-[N-(Benzyloxycarbonyl)amino]-6-hydroxy-3-heptenedioate (19). SnCl₄ (10.0 mL, 86.7 mmol) was added over 2 min to a stirred solution of 16^{16b} (5.01 g, 20.0 mmol) in dry CH_2Cl_2 (125 mL) at approximately -55 °C. The solution was cooled to -78 °C and stirred for 5 min, and 18 (5.86 g, 22.3 mmol) in dry CH₂Cl₂ (40 mL) was added over 15 min. The solution was warmed to -23 °C and was stirred for 3 h. The mixture was quenched with ether (500 mL) and washed with saturated NaHCO₃ (2 \times 250 mL) and water (250 mL). The organic layer was dried over Na₂SO₄ and concentrated in vacuo to give a pale yellow oil. Purification by flash chromatography (EtOAc 40%/hexane 60%) gave 8.20 g (83%) of 19 as a clear oil: $[\alpha]_D + 28.1^\circ$ (c = 1.88, CHCl₃); IR (CHCl₃ cast) 3420, 3360, 2936, 1726, 1271, 1208 cm⁻¹; ¹H NMR (360 MHz, CDCl₃) δ 7.44–7.10 (m, 10H), 5.55 (d, 1H, J = 7.9 Hz), 5.25–4.92 (m, 5H), 4.75-4.64 (m, 1H), 3.96 (dd, 1H, J = 11.0, 6.0 Hz), 3.68 (s, 3H) 2.90 (br s, 1H), 2.65 (m, 1H), 2.18-2.00 (m, 1H) 2.00-1.18 (m, 9H); ¹³C NMR (75.5 MHz, CDCl₃) δ 173.3, 171.0, 155.4, 142.8, 136.2, 128.5, 128.3, 127.55, 127.5, 126.8, 78.0, 69.3, 67.0, 55.3, 52.5, 49.8, 36.5, 33.7, 32.1, 25.6, 24.6; exact mass 495.2259 (495.2257 calcd for C28H33NO7). Anal. Calcd for C₂₈H₃₃NO₇: C, 67.86; H, 6.71; N, 2.83. Found: C, 67.55; H, 6.88; N, 2.90.

1-Methyl 7-[(1.*S*,2*R*)-*trans*-2-Phenylcyclohexyl] (2.*S*,6*S*)-2-[*N*-(Benzyloxycarbonyl)amino]-6-hydroxy-3-heptenedioate (20). The previous procedure was adapted to condense 17^{16b} (1.05 g, 4.20 mmol) and **18** (1.01 g, 3.84 mmol) to give an 81% yield of **20**: $[\alpha]_{\rm D}$ +24.4° (c= 0.85, CHCl₃); IR (CHCl₃ cast) 3420, 3360, 2936, 1726, 1265, 1209 cm⁻¹; ¹H NMR (360 MHz, CDCl₃) δ 7.34–7.06 (m, 10H), 5.54 (d, 1H, J = 8.3 Hz), 5.25– 4.90 (m, 5H), 4.72–4.64 (m, 1H), 4.04–3.96 (m, 1H), 3.68 (s, 3H) 2.90 (d, 1H, J = 6.0 Hz), 2.65 (ddd, 1H, J = 12.2, 11.0, 3.7 Hz), 2.18–2.00 (m, 1H) 2.05–1.22 (m, 9H); ¹³C NMR (90.5 MHz, CDCl₃) δ 173.4, 171.1, 155.4, 142.8, 136.2, 128.5, 128.3, 127.8, 127.52, 127.48, 127.4, 127.3, 126.8, 78.1, 69.4, 67.0, 55.4, 52.5, 49.8, 36.5, 33.8, 32.2, 25.6, 24.6; exact mass 495.2256 (495.2257 calcd for C₂₈H₃₃NO₇). Anal. Calcd for C₂₈H₃₃NO₇: C, 67.86; H, 6.71; N, 2.83. Found: C, 68.02; H, 6.93; N, 2.96.

1-Methyl 7-[(1R,2S)-trans-2-Phenylcyclohexyl] (2S,6R)-2-[N-(tert-Butoxycarbonyl)amino]-6-hydroxyheptanedioate (21). The procedure of Sakaitani et al.²⁷ was adapted. To a solution of 19 (2.68 g, 5.41 mmol) and di-tert-butyl pyrocarbonate (1.56 g, 7.06 mmol) in MeOH (20 mL) was added 5% Pd on carbon (0.0479 g) in MeOH (5 mL). The suspension was stirred under H₂ (1 atm) for 20 h and then filtered through Celite. The Celite was washed with MeOH, and the combined filtrates were concentrated in vacuo to give a colorless oil. Purification by flash chromatography (CHCl₃ followed by 3% MeOH/CHCl₃ 97%) afforded 2.10 g (84% yield) of **21** as a colorless oil: $[\alpha]_D - 8.3^{\circ}$ (c = 0.579, CHCl₃); IR (CH₃OH cast) 3480 br, 3410 br, 2935, 2865, 2858, 1742, 1716 cm⁻¹; ¹H NMR (360 MHz, CDCl₃) δ 7.36–7.12 (m, 5H), 5.03 (ddd, 1H, J = 11.0, 10.4, 4.3 Hz), 4.87 (br d, 1H, J = 7.9 Hz), 4.12 (m, 1H), 3.94 (m, 1H), 3.73 (s, 3H), 2.74-2.60 (m, 2H), 2.24-2.18 (m, 1H), 2.01-1.70 (m, 3H), 1.66-1.05 (m, 8H), 1.46 (s, 9H), 1.00-0.78 (m, 2H); ¹³C NMR (75.5 MHz, CDCl₃) δ 174.3, 173.1, 155.2, $142.8,\,128.2,\,127.4,\,127.3,\,126.6,\,126.5,\,79.4,\,77.7,\,69.8,\,53.1,$ 52.0, 49.8, 33.8, 33.3, 32.1, 32.0, 28.2, 25.5, 24.5, 20.3; exact mass 463.2547 (463.2570 calcd for C25H37NO7). Anal. Calcd

⁽²⁷⁾ Sakaitani, M.; Hori, K.; Ohfune, Y. *Tetrahedron Lett.* **1988**, *29*, 2983–2984.

for $C_{25}H_{37}NO_7$: C, 64.78; H, 8.05; N, 3.02. Found C, 64.55; H, 7.69; N, 2.94.

1-Methyl 7-[(1S,2R)-trans-2-Phenylcyclohexyl] (2S,6S)-2-[N-(tert-Butoxycarbonyl)amino]-6-hydroxyheptanedioate (22). Alcohol 22 was prepared in 80% yield from 20 (0.512 g, 1.03 mmol) by the same procedure used for the synthesis of 21, employing Boc anhydride (99%, 0.291 g, 1.32 mmol) and 5% Pd on carbon (0.109 g) in 11 mL of MeOH: $[\alpha]_D + 17.7$ (*c* = 1.30, CHCl₃); IR (CHCl₃ cast) 3380, 2936, 1737, 1719, 1253, 1210, 1165, 1113 cm $^{-1}$; $^1\mathrm{H}$ NMR (360 MHz, CDCl_3) δ 7.34-7.16 (m, 5H), 5.10 (ddd, 1H, J = 11.0, 10.4, 4.3 Hz), 4.85 (d, 1H, J = 8.6 Hz), 4.18–4.08 (m, 1H), 3.99–3.90 (m, 1H), 3.74 (s, 3H), 2.74-2.64 (m, 1H), 2.62 (d, 1H, J = 5.5 Hz), 2.22-2.10 (m, 1H), 2.00-1.87 (m, 3H), 1.66-0.70 (m, 10H), 1.45 (s, 9H); ¹³C NMR δ 174.2, 173.0, 155.2, 142.6, 128.2, 128.1, 127.2, 126.64, 126.58, 79.5, 77.6, 69.6, 53.0, 51.9, 49.7, 33.6, 33.1, 32.0, 31.8, 28.1, 25.5, 24.5, 19.7; exact mass 404.2426 (M⁺ C₂H₃O₂). Anal. Calcd for C₂₅H₃₇NO₇: C,64.78; H, 8.05; N, 3.02. Found: C, 64.83; H, 7.75; N, 2.83.

1-Methyl 7-(1R,2S)-trans-2-Phenylcyclohexyl (2S,6R)-2-(N-(tert-Butoxycarbonyl)amino]-6-[(methylsulfonyl)oxy]heptanedioate (23). Methanesulfonyl chloride (98%, 0.220 mL, 2.75 mmol) was added to a stirred solution of 21 (0.965 g, 2.08 mmol) in dry pyridine (20 mL) under argon. The mixture was stirred for 1.75 h and was then quenched by the addition of 20% CuSO₄·5H₂O solution (30 mL). The solution was extracted with CH_2Cl_2 (3 \times 50 mL), and the combined organic phases were washed with 2 M HCl (3 \times 30 mL), dried over Na₂SO₄, and then concentrated in vacuo to yield 1.05 g (94%) of **23** as an oil: $[\alpha]_D + 14.00^\circ$ (c = 1.35, CHCl₃); IR (CHCl₃) cast) 3380, 2935, 2860, 1746, 1714, 1365, 1208, 1176 cm⁻¹; ¹H NMR (360 MHz, CDCl₃) δ 7.36-7.17 (m, 5H), 5.06 (ddd, 1H, J = 11.0, 10.4, 4.3 Hz), 4.90 (br d, 1H, J = 8.6 Hz), 4.76 (dd, 1H, J = 6.1, 5.5 Hz), 4.22-4.12 (m, 1H), 3.75 (s, 3H), 2.95 (s, 3H), 2.77-2.66 (m, 1H), 2.23-2.15 (m, 1H), 2.03-1.78 (m, 3H), 1.70-0.90 (m, 10H), 1.48 (s, 9H); ¹³C NMR (90.5 MHz, $CDCl_3$) δ 172.9, 168.1, 155.2, 142.8, 128.5, 128.4, 127.6, 127.4, 126.7, 79.8, 78.1, 77.3, 52.9, 52.2, 49.8, 38.7, 34.1, 32.1, 31.8, 31.0, 28.2, 25.5, 24.6, 20.3; exact mass 482.2206 (482.2206 calcd for $M^+-C_2H_3O_2$), MS (Pos FAB, Cleland) 542.53 (542.23 calcd for MH⁺). Anal. Calcd for C₂₆H₃₉NO₉S: C, 57.65; H, 7.26; N, 2.58; S, 5.92. Found: C, 57.53; H, 7.15; N, 2.70; S, 5.66.

1-Methyl 7-(1*S*,2*R*)-*trans*-2-Phenylcyclohexyl (2*S*,6*S*)-2-[N-(tert-Butoxycarbonyl)amino]-6-[(methylsulfonyl)oxy]heptanedioate (24). Mesylate 24 was prepared from 22 (1.47 g, 3.23 mmol) in 94% yield in the same manner as 23 was prepared from 21, using methanesulfonyl chloride (98%, 0.330 mL, 4.18 mmol), in dry pyridine (20 mL): $[\alpha]_{D} + 2.9^{\circ}$ (*c* = 1.0, CHCl₃); IR (CHCl₃ cast) 3380, 2936, 1749, 1715, 1365, 1210, 1176 cm ⁻¹; ¹H NMR (360 MHz, CDCl₃) δ 7.36–7.18 (m, 5H), 5.06 (ddd, 1H, J = 11.0, 10.4, 4.3 Hz), 4.90 (br d, 1H, J = 8.0 Hz), 4.82-4.76 (m, 1H), 4.22-4.14 (m, 1H), 3.74 (s, 3H), 2.95 (s, 3H), 2.77-2.66 (m, 1H), 2.23-2.15 (m, 1H), 2.03-1.78 (m, 3H), 1.70-0.90 (m, 10H), 1.47 (s, 9H); ¹³C NMR (90.5 MHz, CDCl₃) & 172.9, 168.1, 155.2, 142.8, 128.4, 127.3, 126.7, 79.7, 78.1, 77.8, 52.9, 52.1, 49.7, 38.6, 34.0, 32.0, 31.4, 30.8, 28.1, 25.5, 24.5, 19.9; exact mass 482.2206 (482.2206 calcd for M⁺ C₂H₃O₂), MS (Pos FAB, Cleland) 542.27 (542.23 calcd for MH⁺). Anal. Calcd for C₂₆H₃₉NO₉S: C, 57.65; H, 7.26; N, 2.58; S, 5.92. Found: C, 57.82; H, 7.25; N, 2.48; S, 5.67.

1-Methyl 7-(1*R*,2*S*)-*trans*-2-Phenylcyclohexyl (2*S*,6*S*)-2-[*N*-(Butoxycarbonyl)amino]-6-azidoheptanedioate (25). Mesylate 23 (0.819 g, 1.51 mmol) and NaN₃ (0.400 g, 6.16 mmol) were dissolved in dry DMF (15 mL) and stirred under Ar for 28 h. The DMF was removed in vacuo, and the residue was taken up in CH₂Cl₂ (75 mL) and washed with brine (2 × 30 mL). The organic layer was dried over Na₂SO₄ and then concentrated in vacuo to give a red oil that was purified by flash chromatography (EtOAc 25%/hexane 75%) to afford 0.647 g (88% yield) of 25 as a colorless oil: $[\alpha]_D - 4.1^{\circ}$ (*c* = 2.18, CHCl₃); IR (CHCl₃ cast) 3375, 2936, 2861, 2107, 1739, 1717 cm⁻¹; ¹H NMR (360 MHz, CDCl₃) δ 7.33–7.16 (m, 5H), 5.06 (ddd, 1H, *J* = 11.0, 10.4, 4.3 Hz), 4.94 (br d, 1H, *J* = 8.6), 3.73 (s, 3H), 3.47 (dd, 1H, *J* = 7.3, 6.7 Hz), 2.72 (ddd, 1H, *J* = 12.2, 11.0, 3.7 Hz), 2.16–2.10 (m, 1H), 2.02–1.73 (m, 3H), 1.72–1.02 (m, 10H), 1.45 (s, 9H); 13 C NMR (MHz, CDCl₃) δ 172.9, 169.3, 155.2, 142.5, 128.4, 127.5, 126.7, 79.8, 77.7, 61.7, 52.9, 52.2, 49.9, 33.8, 32.1, 31.8, 30.5, 28.2, 25.6, 24.7, 21.3; MS (Pos FAB glycerol) 463.36 (463.27 calcd for MH⁺). Anal. Calcd for C₂₅H₃₆N₄O₆: C, 61.46; H, 7.43; N, 11.47. Found: C, 61.65; H, 7.70; N, 11.40.

1-Methyl 7-[(1S,2R)-trans-2-Phenylcyclohexyl] (2S,6R)-2-[N-(tert-Butoxycarbonyl)amino]-6-azidoheptanedioate (26). Azide 26 was prepared from 24 (1.12 g, 2.06 mmol) in 77% yield by the same method as employed for the preparation of **25** from **23**, using NaN₃ (0.552 g, 8.49 mmol) in dry DMF (20 mL): $[\alpha]_D + 25.3^{\circ}$ (c = 1.44, CHCl₃); IR (CHCl₃) cast) 3375, 2936, 2861, 2107, 1739, 1717 cm⁻¹; ¹H NMR (360 MHz, CDCl₃) δ 7.38–7.16 (m, 5H), 5.06 (ddd, 1H, J = 11.0, 10.4, 4.3 Hz), 4.94 (br d, 1H, J = 8.6 Hz), 3.74 (s, 3H), 3.45 (dd, 1H, J = 7.9, 6.7 Hz), 2.72 (ddd, 1H, J = 11.0, 11.0, 3.7 Hz), 2.22-2.12 (m, 1H), 2.04-1.78 (m, 3H), 1.78-1.06 (m, 10H), 1.45 (s, 9H); ¹³C NMR (MHz, CDCl₃) & 172.9, 169.3, 155.2, 142.5, 128.3, 127.5, 126.7, 79.9, 77.7, 61.7, 53.0, 52.2, 49.8, 33.7, 32.1, 31.9, 30.5, 28.2, 25.6, 24.7, 21.3; MS (Pos FAB glycerol) 463.36 (463.27 calcd for MH⁺). Anal. Calcd for C25H36N4O6: C, 61.46; H, 7.43; N, 11.47. Found: C, 61.28; H, 7.62; N, 11.50.

1-Methyl 7-[(1*R***,2***S***)-***trans***-2-Phenylcyclohexyl] (2***S***,6***S***)-2-**[*N*-(*tert*-Butoxycarbonyl)amino]-6-aminoheptanedioate (27). Azide 25 (0.645 g, 1.32 mmol) in MeOH (10.0 mL) was added to 5% Pd on carbon (0.0805 g) moistened with MeOH. The mixture was then stirred under H₂ (1 atm) for 1.5 h. It was filtered through Celite, and the Celite was washed with MeOH. The combined filtrates were concentrated in vacuo to give 0.485 g (80% yield) of **27** as an oil: $[\alpha]_D - 4.7^\circ$ (*c* = 0.867, CHCl₃); IR (CHCl₃ cast) 3370, 2934, 1743, 1716, 1166 cm⁻¹; ¹H NMR (360 MHz CDCl₃) δ 7.38-7.12 (m, 5H), 5.16-4.89 (m, 2H), 4.25-4.08 (m, 1H), 3.73 (s, 3H), 2.73-2.59 (m, 1H), 2.18-0.80 (m, 16H), 1.43 (s, 9H); ¹³C NMR (75.5 MHz, CDCl₃) δ 174.2, 172.8, 155.0, 142.5, 127.9, 127.1, 126.1, 76.0, 53.7, 52.8, 51.6, 49.4, 33.2, 31.8, 31.6, 27.9, 25.3, 24.3, 20.9; exact mass 462.2734 (462.2730 calcd for C₂₅H₃₈N₂O₆).

1-Methyl 7-[(1.*S***,2***R***)-***trans***-2-Phenylcyclohexyl] (2.***S***,6***R***)-2-[***N***-(***tert***-Butoxycarbonyl)amino]-6-aminoheptanedioate (28). Amine 28 was prepared from 26 (0.775 g, 1.59) in 93% yield in a manner analogous to the synthesis of 27** from **25**, using 5% Pd on carbon (0.489 g) in MeOH (15 mL): $[\alpha]_D$ +23.1° (*c* = 1.21, CHCl₃); IR (CHCl₃ cast) 3370, 2973, 2931, 2858,1741, 1714, 1165 cm⁻¹; ¹H NMR (360 MHz CDCl₃) δ 7.36–7.18 (m, 5H), 5.20–5.00 (m, 2H), 4.45–4.10 (m, 3H), 3.76 (s, 3H), 2.76–2.66 (m, 1H), 2.23–1.00 (m, 14H), 1.46 (s, 9H); ¹³C NMR (75.5 MHz, CDCl₃) δ 174.3, 172.8, 155.0, 142.5, 127.9, 127.2, 126.2, 79.2, 76.0, 53.7, 52.8, 51.6, 49.5, 33.2, 31.8, 31.6, 27.9, 25.3, 24.3, 20.9; exact mass 462.2731 (462.2730 calcd for C₂₅H₃₈N₂O₆).

(2S,6S)-2-[N-(tert-Butoxycarbonyl)amino]-6-aminoheptanedioic Acid (29). LiOH·H₂O (0.0999 g, 2.38 mmol) was added to a stirred solution of 27 (0.275 g, 0.595 mmol) in 3:1 THF/H₂O (20.0 mL), and the solution was stirred at room temperature for 4.5 h. The THF was removed in vacuo, and the aqueous solution was washed with CH_2Cl_2 (3 \times 10 mL). It was then acidified to pH 4 with 5.7 M HCl. Lyophilization yielded **29** as its lithium salt in the form of a hygroscopic white foam (0.259 g): IR (CH₃OH cast) 3360, 3040, 1687, 1601 cm⁻¹; ¹H NMR (360 MHz, CD₃OD) δ 4.08–3.83 (m, 1H), 3.78–3.55 (m, 1H), 2.10-1.12 (m, 6H) 1.47 (s, 9H); ¹³C NMR (75.5 MHz, CD₃OD) & 179.4, 174.8, 157.8, 80.4, 56.7, 55.9, 33.6, 31.9, 28.8, 22.4; MS (Pos FAB glycerol/HCl) 291.02 (291.16 calcd for $C_{11}H_{20}N_2O_6Li_2$, 297.03 (297.18 calcd for $C_{11}H_{20}N_2O_6Li_3$). Acidic deprotection with trifluoroacetic acid and standard cationexchange chromatography (AG50) gave LL-DAP (1b) and meso-DAP (1a) in a ratio of 84:16. The ratio was determined by conversion to corresponding camphanamide derivatives 31a,b (see below).

(2.5,6.5)-2-[*N*-(*tert*-Butoxycarbonyl)amino]-6-aminoheptanedioic Acid (30). The procedure used for the conversion of 27 to 29 was utilized to prepare 30 as its lithium salt (0.216 g) from 28 (0.209 g, 0.452 mmol), employing LiOH·H₂O (0.0765 g, 1.82 mmol) in 3:1 THF/H₂O (20.0 mL) over 5 h: IR (CH₃-OH cast) 3400, 3040, 1686, 1602 cm⁻¹; ¹H NMR (360 MHz, CD₃OD) δ 4.08–3.83 (m, 1H), 3.78–3.55 (m, 1H), 2.10–1.12 (m, 6H) 1.47 (s, 9H); ¹³C NMR (75.5 MHz, CD₃OD) δ 179.3, 174.6, 157.8, 80.2, 56.8, 56.0, 33.9, 32.0, 28.8, 22.7; MS (Pos FAB glycerol/HCl) 297.03 (297.18 calcd for C₁₁H₂₀N₂O₆Li₃). Acidic deprotection with trifluoroacetic acid and standard cation-exchange chromatography (AG50) gave *meso*-DAP (**1a**) and LL-DAP (**1b**) in a ratio of 86:13. The ratio was determined by conversion to corresponding camphanamide derivatives **31a.b.**

Stereochemical Analysis of DAP Isomers: Dimethyl (2S,6S)-2,6-Bis([(1S,4R)-4,7,7-trimethyl-3-oxo-2-oxabicyclo-[2.2.1]heptane(carbonylamino)heptanedioate (31b), Its (2R,6R)-Isomer 31c, and Its (2S,6R)-Isomer 31a. NMR spectral comparison, particularly of the methyl ester region $(\delta 3.7-3.8)$, of DAP derivatives **31** allows determination of stereochemical purity to $\pm 2\%$. LL-DAP (1b) (1.93 mg, 0.0102 mmol) was dissolved in 1 M NaHCO₃/Na₂CO₃ buffer, pH 10.4 (2 mL). Toluene (1 mL) was added followed by (1S, 4R)-(-)camphanic chloride (10.2 mg, 0.0469 mmol), and the mixture was stirred vigorously at room temperature for 2.5 h. The solution was acidified to pH 1 with 5.7 M HCl. It was then diluted to 5 mL with water and extracted with dichloromethane (3×10 mL). The combined organic fractions were dried over Na₂SO₄ and were concentrated in vacuo. The residue was taken up in ether (2 mL). This was treated with a solution of CH₂N₂ in ether until a yellow color persisted. The ether was evaporated to give 17.1 mg of a waxy solid, which was heated at 65-70 °C for 5 h at 0.4 mmHg to remove methyl camphanoate and give 5.16 mg (88%) of a colorless oil: $[\alpha]_D$ -4.7° (c = 1.25, CHCl₃); IR (CHCl₃ cast) 3416, 3365, 2965, 1793, 1745, 1674, 1527 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.87 (br d, J = 8.2 Hz, 2H, 2 NH), 4.63-4.57 (m, 2H, 2 CHNH), 3.75 (s, 6H, OCH₃), 2.53-2.42 (m, 2H, 2 CH_aHCR₂CON), 1.99-1.82 (m, 6H, 2 CH_aHCR₂CON, 2 CH_aHCR₂CO₂, 2 CH_aHCHN), 1.78-1.47 (m, 4H, 2 CHHbCR2CO2, 2 CHHbCHN), 1.46-1.32 (m, 2H, CH₂), 1.12 (s, 6H, 2 CH₃), 1.11 (s, 6H, 2 CH₃), 0.92 (s, 6H, 2 CH₃); ¹³C NMR (75.5 MHz, CDCl₃) δ 177.9 (CO₂R), 171.6 (CO2R), 167.1 (CONH), 92.2 (NCO), 77.2 (CHNH), 55.3 (OCH3), 53.9 (CR4), 52.6 (CR4), 51.6 (CH3), 32.0 (CH2), 31.8 (CH2), 30.4 (CH₂), 29.1 (CH₂), 21.5 (CH₂), 16.7 (CH₃), 16.6 (CH₃), 9.7 (CH₂); exact mass 578.2824 (578.2839 calcd for C₂₉H₄₂N₂O₁₀).

Employing the same procedure, 31a was prepared from meso-DAP (Ia): IR (CHCl3 cast) 3360, 2966, 1792, 1746, 1674, 1528 cm⁻¹; ¹H NMR (360 MHz, CDCl₃) δ 6.92 (br d, J = 8.3Hz, 1H, NH), 6.80 (br d, J = 8.0 Hz, 1H, NH), 4.65-4.51 (m, 2H, 2 CHNH), 3.77 (s, 3H, OCH₃), 3.74 (s, 3H, OCH₃), 2.58-2.40 (m, 2H, 2 CH_aHCR₂CON), 2.05-1.82 (m, 6H, 2 CH_aHCR₂-CON, 2 CH_aHCR₂CO₂, 2 CH_aHCHN), 1.80-1.62 (m, 4H, 2 CHHbCR2CO2, 2 CHHbCHN), 1.45-1.30 (m, 2H, CH2), 1.08 (m, 9H, 3 CH₃), 1.03 (s, 3H, CH₃) 0.93 (s, 3H, 2CH₃), 0.90 (s, 3H, 2CH₃); ¹³C NMR (75.5 MHz, CDCl₃) δ 178.0 (CO₂R), 177.8 (CO2R), 171.62 (CO2R), 171.55 (CO2R), 167.0 (CONH), 92.21 (NCO), 92.15 (NCO), 55.3 (CHNH), 55.2 (OCH₃), 54.1 (CR₄), 53.9 (CR₄), 52.5 (CR₄), 52.4 (CR₄), 51.53 (CH₃), 51.47 (CH₃), 51.4 (CH₃), 51.3 (CH₃), 31.9 (CH₂), 31.8 (CH₂), 31.4 (CH₂), 30.3 (CH₂), 29.0 (CH₂), 21.5 (CH₂), 16.6 (CH₃), 16.5 (CH₃), 16.4 (CH₃), 9.6 (CH₂); exact mass 578.2832 (578.2839 calcd for C₂₉H₄₂N₂O₁₀). Anal. Calcd for C₂₉H₄₂N₂O₁₀: C, 60.19; H, 7.32; N, 4.84. Found: C, 60.03; H, 7.59; N, 4.56.

Employing the same procedure, **31c** was prepared from DD-DAP (**1c**): $[\alpha]_D - 13.5^\circ$ (c = 0.11, CHCl₃); IR (CHCl₃ cast) 3365, 2965, 1790, 1745, 1672, 1528 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.80 (br d, J = 8.3 Hz, 2H, 2 NH), 4.63–4.57 (m, 2H, 2 CHNH), 3.75 (s, 6H, OCH₃), 2.64–2.50 (m, 2H, 2 CH₄HCR₂-CON), 2.02–1.85 (m, 6H, 2 CH₄HCR₂CON, 2 CH₄HCR₂CO₂, 2 CH₄HCHN), 1.85–1.62 (m, 4H, 2 CH₄HCR₂CO₂, 2 CH₄HCR), 1.50–1.38 (m, 2H, CH₂), 1.12 (s, 6H, 2 CH₃), 1.08 (s, 6H, 2 CH₃), 0.96 (s, 6H, 2 CH₃); ¹³C NMR (75.5 MHz, CDCl₃) δ 178.1 (CO₂R), 171.8 (CO₂R), 167.2 (CONH), 92.3 (NCO), 55.4 (OCH₃, CHNH)), 54.2 (CR₄), 52.5 (CR₄), 51.4 (CH₃), 31.5 (CH₂), 30.4 (CH₂), 29.1 (CH₂), 21.7 (CH₂), 16.6 (CH₃), 9.7 (CH₂); exact mass 578.2836 (578.2839 calcd for C₂9H₄2N₂O₁).

Dimethyl (25,65)-6-[N-(Benzyloxycarbonyl)amino]-2hydroxyheptane-1,7-dioate (33) from 32. The procedure of Noyori and co-workers¹⁸ was adapted. All the reagents and solvents were predried and degassed. To a dry Schlenk tube charged with dimethyl (6S)-6-[N-(benzyloxycarbonyl)amino]-2-oxoheptane-1,7-dioate (32)4a (180 mg, 0.513 mmol) and methanol (5 mL) was added the in situ prepared (S)-Binap-Ru(II) complex (2 mg)¹⁸ under a stream of År. The resulting yellow-orange solution was further degassed by two freezethaw cycles and transferred to a dry, argon-filled autoclave that was evacuated by vacuum and refilled with hydrogen five times. Finally, the system was kept at 4 atm hydrogen, 100 °C for 4 h. After the autoclave was cooled to room temperature and excess hydrogen was allowed to bleed off, the solution was evaporated in vacuo. The residue was separated by flash chromatography (40% EtOAc in hexane) to give 33 as an oil (163 mg, 90%). Conversion to DAP and NMR analysis of the corresponding Mosher amides (see Scheme 6 and below) showed an isomeric ratio 6S:6R of 79:21 (58% de): $R_f 0.79$ (EtOAc); IR (CH₂Cl₂ cast) 3356, 1790-1760, 1735, 1527 cm⁻¹; ¹H NMR (CDCl₃, 360 MHz) δ 1.40–1.95 (m, 6 H), 3.70 (s, 3 H), 3.78 (s, 3 H), 4.08-4.20 (m, 1 H), 4.31-4.41 (m, 1 H), 5.17 (s, 2 H), 5.20-5.31 (br s, 1 H), 7.29-7.40 (m, 5 H); ¹³C NMR (CDCl₃, 100 MHz) & 20.73, 32.36, 33.70, 52.43, 52.61, 53.68, 67.07, 70.13, 128.15, 128.23, 128.57, 136.24, 156.20, 172.81, 175.43; exact mass 353.1468 (7.3, M⁺) (353.1474 calcd for C₁₇H₂₃NO₇). Anal. Calcd for C₁₇H₂₃NO₇: C, 57.78; H, 6.56; N, 3.96. Found: C, 57.42; H, 6.65; N, 3.87.

Dimethyl (2S,6R)-2-[N-(Benzyloxycarbonyl)amino]-6-[N-(tert-butoxycarbonyl)-N-[[2-(trimethylsilyl)ethyl]sulfonyl]amino]heptane-1,7-dioate (35). To a solution of Ph3P (115 mg, 0.442 mmol), carbamate 34¹⁹ (116 mg, 0.414 mmol), and 33 (96 mg, 0.27 mmol) in 20 mL of THF at 0 °C was added dropwise diethyl azodicarboxylate (65 μ L, 0.414 mmol) over a 5 min period. The solution was stirred for 5 h at room temperature, concentrated in vacuo, and purified by flash chromatography (25% EtOAc in hexane) to give 35 as an oil (132 mg, 79%): $R_f 0.32$ (30% EtOAc in hexane); IR (CHCl₃ cast) 3376, 1729, 1520 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.06 (s, 9 H), 1.02-2.22 (m, 17 H), 1.47 (s, 9 H), 3.40-3.60 (m, 2 H), 3.71 (s, 6 H), 4.30-4.40 (m, 1 H), 4.68-4.75 (m, 1 H), 5.09 (s, 2 H), 5.30-5.37 (m, 1 H), 7.26-7.38 (m, 5 H); CI MS m/z (NH₃) 634 (19, $[M + 18]^+$), 617 (1, $[M + 1]^+$). Anal. Calcd for C₂₇H₄₄N₂O₁₀SSi: C, 52.58; H, 7.19, N, 4.54. Found: C, 52.36; H, 7.02; N, 4.68.

(3R,6S)-3-Isopropyl-2,5-dimethoxy-6-[2-(phenylthio)-2propenyl]-3,6-dihydropyrazine (38). The alkylating agent 3-chloro-2-thiophenylpropene (37) was prepared by a modification of the literature method²³ and was used without purification. Thus, allene (0.61 g, 15.2 mmol) was bubbled into a solution of dry THF (25 mL) at -30 °C at a constant flow rate. Sulfenyl chloride (1.871 g, 12.9 mmol) in THF (5 mL) was then added dropwise (10 min). The resulting solution was stirred at -30 to -20 °C for about 30 min to give a solution of **37** in THF. A cooled solution (-78 °C) of (\vec{R})-Schöllkopf bis-lactim ether 36 (2.32 mL, 12.9 mmol) in THF (20 mL) under Ar was treated with a 2.5 M solution of n-BuLi in hexane (5.2 mL, 12.9 mmol). After being stirred for an additional 10 min at -78 °C, the THF solution of 37 was added via cannula over 15 min and the resulting orange-black solution was stirred at -60 °C for 4 h. After another 12 h, while the temperature was gradually raised to room temperature, the solvent was removed in vacuo and the black residue was partitioned between Et₂O (20 mL) and water (20 mL). The aqueous layer was extracted with Et₂O (3 \times 20 mL), and the combined organic extracts were dried and evaporated. The dark oily residue was purified by flash chromatography (5% EtOAc in hexane) to give **38** as an unstable oil (3.86 g, 90%): $R_f 0.22$ (10% EtOAc in hexane); IR (CHCl₃ cast) 1779, 1721, 1635, 1578 cm⁻¹; ¹H NMR (CD₂Cl₂, 300 MHz) δ 0.68 (d, 3 H, J = 6.9 Hz), 1.07 (d, 3 H, J = 6.9 Hz), 2.20–2.32 (m, 1 H), 2.52–2.81 (m, 2 H), 3.18 (s, 3 H), 3.21 (s, 3 H), 3.92–3.95 (t, 1 H, J = 3.5 Hz), 4.19-4.29 (m, 1 H), 4.92 (s, 1 H), 5.20 (s, 1 H), 7.20-7.47 (m, 5 H); $^{13}\!C$ NMR (CD₂Cl₂, 75.5 MHz) δ 16.66, 19.36, 31.99, 41.37, 61.17, 61.27, 116.46, 128.07, 129.55, 132.89, 133.22, 134.17, 142.11, 163.08, 164.13; CI MS m/z (NH₃) 333 (100, [M + 1]⁺). Anal. Calcd for C₁₈H₂₄N₂O₂S: C, 65.03; H, 7.28; N, 8.43; S, 9.64. Found: C, 65.04; H, 7.24; N, 8.41; S, 9.97.

Methyl (2S)-4-(Phenylthio)allylglycinate (39). A solution of 38 (3.0 g, 9.3 mmol) in 0.4 N CF₃CO₂H (70 mL, 28 mmol) and THF (10 mL) was stirred at room temperature for 4 h. The THF was removed in vacuo, and the aqueous residue was washed with EtOAc (15 mL) before it was concentrated to a volume of 15-20 mL. The pH was adjusted to 8-9 by adding saturated aqueous Na₂CO₃ solution. The mixture was extracted with EtOAc (3×25 mL), and the combined organic extracts were washed with brine (15 mL). The organic solution was dried and evaporated in vacuo. The resulting oil was bulbto-bulb distilled, and (R)-valine methyl ester was the forerun separated from the residue that yielded relatively unstable 39 (1.73 g, 79%): $R_f 0.19$ (EtOAc); $[\alpha]_D + 21.31^\circ$ (c = 1.60, CHCl₃); IR (CHCl₃ cast) 3379, 3316, 1739, 1607 cm⁻¹; ¹H NMR (CD₂-Cl₂, 300 MHz) 2.40-2.70 (m, 2 H), 3.65 (s, 3 H), 3.72-3.80 (m, 1 H), 5.02 (s, 1 H), 5.26 (s, 1 H), 7.30-7.49 (m, 5 H); ¹³C NMR (CD₂Cl₂, 75.5 MHz) δ 42.45, 52.21, 54.58, 110.79, 128.46, 129.69, 133.12, 133.51, 142.05, 175.53; exact mass 237.0823 $(11, M^+)$ (237.0823 calcd for C₁₂H₁₅NO₂S).

To determine the enantiomeric excess, a stirred solution of **39** (11.1 mg, 0.047 mmol) and (1.5)-camphanic acid chloride (15.5 mg, 0.071 mmol) in CH₂Cl₂ (10 mL) was treated with Et₃N (10 μ L, 0.071 mmol). After 1 h, the solution was washed with 1 M HCl (10 mL), dried, and evaporated in vacuo to give a residue. ¹H NMR (CDCl₃, 360 MHz) analysis showed an ee \geq 98%.

Methyl (2S)-N-(Benzyloxycarbonyl)-4-(phenylthio)allylglycinate (40). To a solution of 39 (1.72 g, 7.3 mmol) and benzyl chloroformate (Cbz-Cl) (1.25 mL, 8.76 mmol) in CH₂-Cl₂ (40 mL) was added freshly distilled pyridine (0.71 mL, 8.76 mmol) over 5 min, and the mixture was stirred at room temperature for 4 h. The mixture was then washed with 1 M HCl (10 mL) and brine (10 mL). The organic layer was dried and evaporated in vacuo to afford an oil that was purified by flash chromatography (30% EtOAc in hexane) to obtain 40 as an oil (2.69 g, 98%): R_f 0.48 (30% EtOAc in hexane); $[\alpha]_D$ +16.22° (c 1.0 CHCl₃); IR (CHCl₃ cast) 3345, 1721, 1583 cm⁻¹ ¹H NMR (CDCl₃, 360 MHz) δ 2.58–2.81 (m, 2 H), 3.72 (s, 3 H), 4.62 (m, 1 H), 4.95 (s, 1 H), 5.08-5.17 (m, 3 H), 5.48 (d, 1 H, J = 7.8 Hz), 7.25–7.45 (m, 10 H); ¹³C NMR (CDCl₃, 75.5 MHz) & 52.32, 52.96, 66.95, 38.69, 116.80, 128.03, 128.11, 128.18, 128.47, 129.26, 132.22, 133.24, 136.27, 140.33, 155.61, 171.75; CI MS m/z (NH₃) 372 (80, [M + 1]⁺). Anal. Calcd for C20H21NO4S: C, 64.67; H, 5.70; N, 3.77; S, 8.63. Found: C, 64.60; H, 5.49; N, 3.67; S, 8.90.

Dimethyl (2.5,65)-6-[N-(Benzyloxycarbonyl)amino]-2hydroxy-4-(phenylthio)-4-heptene-1,7-dioate (42). To a dry flask under Ar containing copper trifluoromethanesulfonate (60 mg, 0.084 mmol) and (R)-2,2'-isopropylidenebis-(4-phenyl-2-oxazoline) (41) (61 mg, 0.084 mmol) was added dry CH₂Cl₂ (3 mL) under Ar, and the mixture was stirred for 2 h. The resulting green homogeneous solution was then treated with methyl gloxylate²⁸ (70 mg, 0.8 mmol) and 40 (315 mg, 0.84 mmol) in CH₂Cl₂ (1 mL) at room temperature. After 12 h, the solution was diluted by adding CH_2Cl_2 (20 mL), washed with brine (20 mL), dried, and evaporated in vacuo to give a yellow oil that was purified by flash chromatography (20% EtOAc in hexane) to give **42** as an oil (154 mg, 42%): $R_f 0.22$ (40% EtOAc in hexane); $[\alpha]_D = +82.91$ (*c* 2.0 CHCl₃); IR (CHCl₃ cast) 3366, 1790, 1743, 1514 cm⁻¹; ¹H NMR (CDCl₃, 360 MHz) δ 2.80–2.88 (m, 2 H), 3.78 (s, 6 H), 4.09 (d, 1 H, J = 6.8 Hz), 4.59 (m, 1 H), 5.11 (s, 2 H), 5.21 (dd, 1 H, J = 9.0, 6.2 Hz), 5.42 (d, 1 H, J = 9.0 Hz), 5.76 (d, 1 H, J = 6.2 Hz), 7.20-7.51 (m, 10 H); ¹³C NMR (CDCl₃, 75.5 MHz) & 36.63, 52.40, 52.94, 53.10, 67.31, 69.22, 127.55, 128.07, 128.20, 128.30, 128.58, 129.37, 132.54, 135.98, 138.64, 155.62, 170.42, 173.89; FAB MS *m*/*z* (Cleland) 481 (26, [M + Na]⁺), 460 (1, [M + H]⁺). Anal. Calcd for C23H25NO7S: C, 60.12; H, 5.48; N, 3.05. Found: C, 59.60; H, 5.23; N, 2.98.

Dimethyl (25,65)-6-[N-(Benzyloxycarbonyl)amino]-2hydroxyheptane-1,7-dioate (33) from 42. Compound 42 (150 mg, 0.327 mmol) and NiCl₂·6H₂O (0.53 g, 2.28 mmol) were dissolved in 9 mL of methanol and 3 mL of THF in a flask cooled in an ice bath with stirring. NaBH₄ (254 mg, 6.8 mmol) was added in portions over 15 min. The immediate formation of a black precipitate was observed, and the mixture was stirred for an additional 15 min. The precipitate was filtered through a bed of Celite, and the filtrate was evaporated to dryness in vacuo. Purification of the residue by flash chromatography (20% EtOAc in hexane) gave 33 as an oil (97 mg, 85%) with spectral and chromatographic properties in agreement with those for 33 prepared above from 32. Conversion to DAP and NMR analysis of the corresponding Mosher amides (see Scheme 6 and below) showed an isomeric ratio 6S:6R of 94:6: $[\alpha]_{D}$ +37.23 (c = 0.5, CHCl₃).

Dimethyl (6R,2S)-2-[N-(Benzyloxycarbonyl)amino]-6-[N-(tert-butoxycarbonyl)amino]heptane-1,7-dioate (43). To a solution of **35** (110 mg, 0.176 mmol) in 10 mL of THF was added a 1 M solution of n-Bu₄NF (TBAF) in THF (537 μ L, 0.54 mmol). The resulting solution was stirred for 15 min and then diluted with 45 mL of Et₂O. The organic layer was washed with water (4 \times 20 mL) followed by 15 mL of saturated aqueous NaHCO₃, dried, and concentrated in vacuo. The residue was purified by flash chromatography (50% EtOAc in hexane) to give 43 (78 mg, quantitative) as an oil: $R_f 0.55$ (50%) EtOAc in hexane); $[\alpha]_D$ +5.45 (c = 0.5, CHCl₃); IR (CHCl₃ cast) 3348, 1741, 1716, 1521 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.70–2.15 (m, 15 H), 1.41 (s, 9 H), 3.70 (s, 3 H), 3.72 (s, 3 H), 4.22-4.42 (m, 2 H), 5.09 (s, 2 H), 5.35 (m, 1 H), 7.27-7.38 (m, 5 H); ¹³C NMR (CDCl₃, 75.5 MHz) & 21.17, 28.28, 31.90, 32.31, 52.27, 53.55, 67.06, 67.51, 79.99, 127.75, 128.16, 128.51, 136.21, 155.10, 172.79, 173.03; CI MS m/z (NH3) 470 (51, [M $(+ 18)^+$), 453 (17, $[M + 1]^+$). Anal. Calcd for C₂₂H₃₂N₂O₈: C, 58.40; H, 7.13; N, 6.19. Found C, 58.00; H, 7.15; N, 6.13.

(2S,6R)-2-[N-(Benzyloxycarbonyl)amino]-6-[N-(tert-butoxycarbonyl)amino]-heptane-1,7-dioic Acid (44). A mixture of 43 (70 mg, 0.153 mmol) and 10% aqueous NaOH (340 μ L, 0.82 mmol) was stirred vigorously for 4 h and then diluted with water (2 mL) and CH₃CN (3 mL). After an additional 14 h of stirring, the mixture was diluted with water (4 mL), washed with EtOAc (4 mL), acidified to pH 1 with 2 M HCl, and extracted with EtOAc (3 \times 20 mL). The combined extracts were dried and evaporated in vacuo to give 44 (60 mg, 94%): IR (CHCl₃ cast) 3348, 1747, 1716, 1528 cm⁻¹; ¹H NMR (CDCl₃, 360 MHz) & 1.15-1.57 (m, 11 H), 1.41 (s, 9 H), 1.62-1.87 (m, 4 H), 4.21-4.44 (m, 4 H), 5.11 (s, 2 H), 7.28-7.40 (m, 5 H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 21.17, 28.29, 31.90, 32.31, 52.85, 53.55, 57.06, 79.99, 127.76, 128.17, 128.51, 136.22, 153.50, 153.92, 172.79, 173.04; CI MS m/z (NH₃) 442 (92, [M + 18]⁺), 425 (30, $[M + 1]^+$).

meso-Diaminopimelic Acid (1a) from 44. To a solution of 44 (14 mg, 0.033 mmol) in methanol (15 mL) and glacial AcOH (1 mL) was added 10% Pd/C (10 mg). The suspension was stirred under 1 atm of H₂ for 14 h and then filtered through cotton wool. The filtrate was evaporated in vacuo to give a powder, to which was added a mixture of CF_3CO_2H (15 mL) and CH_2Cl_2 (15 mL). The resulting solution was stirred at room temperature for 15 min and then evaporated in vacuo. The residue was purified by ion-exchange chromatography (AG50W × 8, H⁺ form, 5 mL), eluting with H₂O and 2% to 10% aqueous NH₄OH to give pure 1a (3.9 mg, 64%) with those of a reference sample of *meso*-DAP obtained by classical resolution-separation procedures.¹⁷

Analysis of Diastereomeric Excess of DAP Isomers 1a, 1b, and 1c. In a typical procedure, to a saturated aqueous NaHCO₃ (2 mL) solution of **1a** (2.8 mg, 0.015 mmol) was added (R)-(-)- α -methoxy- α -(trifluoromethyl)phenylacetyl chloride (11 mg, 0.033 mmol). After being stirred at room temperature for 1 h, the aqueous solution was washed with EtOAc (1 mL), acidified to pH 2 by adding 2 M HCl, and extracted with EtOAc (5 × 10 mL). The extracts were dried and evaporated in vacuo to give a residue that was purified by HPLC (the Mosher amides of different DAP isomers do not separate under these

^{(28) (}a) Hook, J. M. Synth. Commun. **1984**, *14*, 83–87. (b) Kelly, T. R.; Schmidt, T. E.; Haggerty, J. G. Synthesis **1972**, 544.

Synthesis of meso-Diaminopimelic Acid

conditions): (BioRad Model 400 system; solid phase $-C_{18}$ Resolve 10 μm , two 8 mm \times 10 cm columns in tandem; solvent A: 0.1% CF_3CO_2H in H_2O; solvent B: CH_3CN; method: gradient 5%-70% in 35 min, at 1 mL/min, detection at 254 nM; retention time: 27.71 min). ¹H NMR (CDCl₃, 500 MHz) analysis of the methoxy region allowed discrimination between all DAP isomers and provided the isomeric ratios of DAP synthesized by the various procedures.

Acknowledgment. The authors are grateful to Professor Robert M. Williams for sharing the results of his studies¹¹ prior to publication. This work was supported by Merck Frosst Canada and the Natural Sci-

ences and Engineering Research Council of Canada. We thank Drs. Mark D. Andrews, Joanna M. Harris, and Lister Lam for helpful discussions and assistance.

Supporting Information Available: ¹H and ¹³C NMR spectra of compounds **1a**, **7**, **12**, **14**, **27–29**, **39**, and **44** (13 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO972133H